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45 (15) An analogous result holds for the Lie algebra gl(n,K) of GL(n,K) for
K = C,H, i.e. gl(n,K) = Mat(n × n,K) as a real vector space and the
Lie bracket is given by the standard commutator of matrices.

45 (-4, -2) replace e by the unit matrix I

46 (12-13) Here (and in calculations elsewhere) LX̃ , LỸ , Lk = Lek denote the Lie

derivatives along the vector fields X̃, Ỹ , ek, cf. Sect. A.1.10 (not to be
confused with left translations by a group element of a Lie group).

48 (5) replace sp(n) by sp(n)

56 (-10, -7) Replace the interval (−α
2 ,

3α
2 ) by (tmin +

α
2 , tmax +

α
2 ) and

3α
2 > tmax by

tmax +
α
2 > tmax. Then

γ : (tmin +
α
2 , tmax +

α
2 ) → G, t 7→ ϕX(α2 )ϕX(t− α

2 )

is an integral curve of X with γ(0) = e. By uniqueness of solutions of
ODEs

γ(t) = ϕX(t) for all t ∈ (tmin +
α
2 , tmax). (∗)

If tmin = −∞, then

γ : (−∞, tmax +
α
2 ) → G

is an extension of ϕX : (−∞, tmax) → G.

If tmin > −∞, then

(tmin, tmax +
α
2 ) → G, t 7→

{
ϕX(t) t ∈ (tmin, tmax)

γ(t) t ∈ (tmin +
α
2 , tmax +

α
2 )

is an extension of ϕX : (tmin, tmax) → G, well-defined and smooth by
eqn. (∗).

65 (-4) replace γ : R → R by γ : R → K
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69 (-5, -2) The claim follows without the Taylor formula using

µ̃(0, 0) = 0, D(0,0)µ̃(x, y) = x+ y

(see p. 70, lines 2 and 6). By the definition of the total derivative

lim
t→0

||µ̃(tx, ty)− µ̃(0, 0)−D(0,0)µ̃(tx, ty)||
||(tx, ty)− (0, 0)||

= 0,

holds for all (x, y) ̸= (0, 0). It follows that

lim
t→0

||µ̃(tx, ty)− t(x+ y)||
t

= 0.

86 (-12) For a finite-dimensional real or complex vector space V , the Lie alge-
bra of the Lie group GL(V ) is gl(V ) = End(V ) as a real vector space
(cf. Theorem 1.5.22 and Examples 1.4.3 and 1.4.4).

96 (-8, -3) unitary representation of a Lie algebra here means skew-Hermitian

115 The direct sums in Theorem 2.4.21 and Corollary 2.4.22 are orthogonal
with respect to the Killing form because Bg(X,Y ) = 0 for all X ∈ z(g)
(hence adX ≡ 0) and Y ∈ g.

118–119 Theorem 2.5.3 A simpler formulation of Theorem 2.5.3 is: Let G be a compact simple
Lie group. Negative multiples aBg of the Killing form, with a ∈ R−,
are Ad-invariant positive definite scalar products on the Lie algebra g.
Every Ad-invariant positive definite scalar product on g is of this form.

125 (1-2) Show that −Fλ is a positive definite...

140 (-10) For g, h ∈ Gp we calculate

143 (4) This definition holds for all p ∈M .

146 (12) replace αg−1 by cg−1 (conjugation)

146 (-7) replace αg−1 by cg−1 (conjugation)

148 (-8) replace αg−1 by cg−1 (conjugation)

204 (5) Proof The subset EW = π−1(W ) is an embedded submanifold of E be-
cause π : E →M is a submersion and W ⊂M is an embedded subman-
ifold. Hence the restriction πM : EW → W is a surjective submersion
between smooth manifolds. Let {(Ui, ϕi)}i∈I be a bundle atlas for...

220 (4) replace s : M → G by s : M → P

232 (7) for a Euclidean bundle metric replace ”non-degenerate symmetric” by
”Euclidean” (pseudo-Euclidean bundle metrics can be defined analo-
gously)

240 (12) Since P × V → E is a submersion, the map ψU is smooth by Lemma
3.7.5.

262 (-14) We have to verify the conditions defining a connection 1-form. We first
check that A is a smooth 1-form: With the inverse of the bundle iso-
morphism P × g

∼=→ V from 3. in Proposition 5.1.3, the map A is given
by the composition

TP = V ⊕H
pr1−→ V

∼=−→ P × g
pr2−→ g

and thus yields a smooth 1-form on P . It is clear that...
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264 (7) T(z0,z1)S
3 = {(X0, X1) ∈ C2 | Re(z̄0X0 + z̄1X1) = 0} (the real part of

the standard Hermitian scalar product on Cn is the standard Euclidean
scalar product on R2n)

266 (-9) replace C∞(P,G)G by C∞(P,G)G

266 (-8) the condition in this definition should hold for all p ∈ P and g ∈ G;
the correct definition is C∞(P,G)G = {σ : P → G smooth | σ(p · g) =
cg−1(σ(p)) = g−1σ(p)g ∀p ∈ P, g ∈ G}.

275 (4) replace Xσ(n) by Xσ(k+l)

275 (5) where X1, . . . , Xk+l are vector fields on P and the commutators on the
right are...

275 (-4) where X,Y are vector fields on P . We can now state...

287 (-5) replace g(0) = e by g(a) = e

289 (3) It follows by uniqueness of horizontal lifts that rg ◦ γ∗p is equal to γ∗p·g.

290 (-9) there is a closing bracket missing at the end of the formula,
i.e. . . . (Φ(γ(t))) ∈ Ex.

291 (1-5) Let q(t) be the uniquely determined curve in the fibre Px such that

ΠA
γt(q(t)) = s(γ(t)).

The curve q(t) is smooth: By the proof of Theorem 5.8.2, there exists a
uniquely determined smooth curve h(t) in G such that

ΠA
γt(s(x)) = γ∗(t) = s(γ(t)) · h(t).

Property 4. of Theorem 5.8.4 implies that q(t) = s(x) ·h(t)−1, in partic-
ular q(t) is a smooth curve. We get

q(t) = s(x) · g(t)
with the uniquely determined smooth curve g(t) = h(t)−1 in G. Then...

292 (2) replace As(x) by As(X)

294 (-7) and
295 Fig. 5.2

The Feynman diagram on the left in Fig. 5.2 (cubic interaction vertex
does not follow from the Klein-Gordon Lagrangian in Eq. (7.3). The
vertex should rather involve one Aµ and two ϕ. The type of interaction
in Fig. 5.2 does however appear in the Standard Model, see Fig. 8.14 on
page 507.

306 (-9) replace dAω by d∇ω

319 (7) by spinor fields (spinors) [blank space missing]

319 (10) the (orthochronous) spin group [blank space missing]

320 (16) also consider complex bilinear [blank space missing]

332 Corollary 6.2.12
333 Theorem 6.2.16
334 (11)
335 (1)

replace orthonormal basis e1, . . . , en by orthogonal basis e1, . . . , en for
(V,Q), i.e. only assume Q(ei, ej) = 0 for all i ̸= j ∈ {1, . . . , n}. The
symmetric bilinear form Q is not assumed to be non-degenerate.

333 (-9) The indices i1, . . . , ik are understood to be pairwise different.

344 (4-9) Example 6.3.18 can be generalized as follows: Let γa,Γa be gamma
matrices for Cl(s, t). Then γ′a = iγa,Γ

′
a = iΓa are gamma matrices for

Cl(t, s). More generally, γ′a = ϵaiγa,Γ
′
a = ϵaiΓa, where ϵa ∈ {±1} can

be chosen for each index a separately, are gamma matrices for Cl(t, s).

If γa,Γa are gamma matrices for Cl(n, 0), where n = s + t, then γ′a =
ϵaγa,Γ

′
a = ϵaΓa for 1 ≤ a ≤ s and γ′a = ϵaiγa,Γ

′
a = ϵaiΓa for s+1 ≤ a ≤

n are gamma matrices for Cl(s, t).
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347 (under Corollary
6.4.4)

The statement that for n odd Cl0(n) ∼= End(∆n) can be identified with
the first summand in Cl(n) ∼= End(∆n)⊕End(∆n) is wrong. The subal-
gebra Cl0(n) is diagonal in Cl(n) (compare with the proof of [88, Chapter
I, Prop. 5.12]).

350 (6) It can be seen that Spin+(s, t) = {v1v2 · · · v2r |
r = p+ q, 2p of the vi are in Ss,t

+ and 2q of the vi in S
s,t
− } (let

v ∈ Ss,t
+ , w ∈ Ss,t

− and write w = w∥ + w⊥ with w∥ = η(v, w)v

and η(v, w⊥) = 0; then wv = vw′ with w′ = w∥ − w⊥ and w′ ∈ Ss,t
− ).

This expression is more useful for showing the subgroup property and
the statement in Definition 6.5.6 for Spin+(s, t).

350 (-4) degt(u) is well-defined because u−1 = v−1
r · · · v−1

1 = (−1)deg
t(u)vr · · · v1

(see [13, p. 52-53]) and the transpose map v1 · · · vr 7→ vr · · · v1 is well-
defined (see [88, Chapter I, eqn. (1.15)]).

352 (3) replace Rs,t by Rs,t

361 (7-8) ...of a G-equivariant left quaternionic vector space on V .

363 Table 6.6 For ρ = 2, 6 mod 8 there exist also symplectic Majorana spinors (see
4. in Theorem 6.7.20 and [20, Theorem 1.39]).

380 Lemma 6.9.11 In the first line of the proof replace ”is a contractible open subset U ′ of”
by ”is a contractible embedded subset U ′ of”.

383 (7-10) (More generally, any metric connection on the tangent bundle, not nec-
essarily torsion-free, defines a unique compatible covariant derivative on
S, see [13, Satz 3.2]. Lemma 6.10.3 below still holds in this case, but
Lemma 6.10.5 does not necessarily hold.)

389 (1) ...suppose that ⟨· , ·⟩S is a Dirac bundle metric...

389 (5) replace map → C∞(M) by map → C
390 (7) ϵ×s is a section over U of the fibre product Spin+(M)×M P (cf. Remark

6.12.7).

391 (-9) replace map → C∞(M) by map → C
391 (-3) replace Dirac operator D by DA

394 (5-6) For the dimensions of V+ and V− see Sect. 8.5.1, in particular Table 8.1
on p. 480 and the discussion following Lemma 8.5.1.

398 In Exercise 6.13.20 the connection on the tangent bundle is assumed to
be the torsion-free Levi-Civita connection.

409 (-5) replace C∞(M) by C∞(M,K)

413 (5-6) the first three terms on the right hand side of the equation should be
multiplied with dvolg

413 (7, 9) replace ⟨∇f, e⟩E by ⟨e,∇f⟩E
414 (-5) replace C∞(U, g) by C∞(U,R)
415 (6) the scalar product on the right hand side in the first line is the one

defined on p. 414, line -5.

418 (-3) Theorem 7.2.12 can be applied because by Proposition 5.9.7 the covari-
ant derivative ∇A on Ad(P ) associated to A is compatible with the
bundle metric ⟨· , ·⟩Ad(P ).

426 (-11, -8, -7) and
427 (2)

replace Cr by Cn, i.e. identify W with Cn to avoid confusion with di-
mension r of the Lie group G.

427 (12) replace W = Cs by W = Cn

427 (-9, -8) replace V by W
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428 Lemma 7.5.8 The claim in Lemma 7.5.8 can also be stated as

∇f∗A
X f−1Φ = f−1∇A

XΦ ∀X ∈ X(M).

This equation shows that ∇A is ”covariant” with respect to the action
of gauge transformations on an associated vector bundle.

428 (9-12) To prove the claim that

⟨fΦ, fΨ⟩E = ⟨Φ,Ψ⟩E ∀Φ,Ψ ∈ Γ(E), f ∈ G(P ),
we consider x ∈ M , p ∈ Px and write Φx = [p, ϕ], Ψx = [p, ψ] with
ϕ, ψ ∈W . Then

fΦx = [f(p), ϕ] = [p · σf (p), ϕ] = [p, ρ(σf (p))ϕ]

and similarly for fΨx. It follows that

⟨fΦx, fΨx⟩E = ⟨ρ(σf (p))ϕ, ρ(σf (p))ψ⟩W = ⟨Φx,Ψx⟩E
since ⟨· , ·⟩W is G-invariant.

439 (3-25) The Majorana mass term is not identically zero if and only if the Majo-
rana form is symmetric (for commuting spinors) or antisymmetric (for
anticommuting spinors), cf. Remark 6.7.7. In particular, for Minkowski
spacetime of dimension 4, the Majorana mass term is not identically
zero only for anticommuting spinors (this is relevant in Sect. 9.2.5.)

440 (14) ...of U(1) on C of winding number k ̸= 0. Suppose that...

469 (1-2) This means that the basis vectors (α3, α4) are obtained by rotating
(β3, β4) clockwise by the angle θW .

479 (3) replace VL = by VR =

488 (-15, -13) We saw above that the Higgs bundle is the vector bundle

C⊗ E (∼= E), (8.14)

where E is associated to the principal bundle P via a unitary represen-
tation on W . Here C denotes...

491 (9-11) See the grey box at the end of Section 8.5 and the comment for p. 495,
lines 3-5 below.

492 (-6, -1) and
494 (-7, -3) item 3.

More details on hypercharge quantization, the compactness of U(1)Y ,
the uniqueness of hypercharge assignments, and the mixed gauge-
gravitational anomaly can be found in N. Lohitsiri, Anomalies and the
Standard Model of particle physics, PhD Thesis, University of Cam-
bridge (2020), Sect. 2.2, and references therein.

495 (3-5) From Table 8.2 on p. 481 and Q = T3 +
Y
2 the electric charge of the

proton (consisting of two up valence quarks and one down valence quark)
is equal to 1

2(1 + 3YQ) and the electric charge of the electron is equal

to 1
2(−1 + YL), hence the sum is 1

2(3YQ + YL). The third constraint in
Table 8.11 shows that this sum is equal to zero.

498 (-9, -8) and
543 Remark 9.2.11 and
552 Remark 9.3.8

For the notion of commuting and anticommuting spinors see Remark
6.7.7. See also the comment for p. 439 lines 3-25 above.

574 (11) See Remark 2.1.42 for the definition of branching rule.

577 (-9) The contraction ⌟ is defined in Definition 6.2.15.
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587–589 According to Corollary 8.5.8 the representations of GSM on the fermions
in the Standard Model descend to representations of GSM/Z6 and hence
to representations of GCQ/Z6. Since Q = T3 +

Y
2 , the representations

C2 ⊗Cy and C⊗Cy of SU(2)L ×U(1)Y decompose under restriction to
U(1)Q into representations of the form C2q, where q is the electric charge
and β ∈ U(1)Q acts as z 7→ β6qz (cf. Lemma 8.5.1). As the electric

charges in the Standard Model are multiples of 1
3 , these representations

descend to representations of U(1)′Q, where U(1)Q → U(1)′Q, β 7→ β2 is

the double cover. It follows that the representations of GCQ/Z6 on the
fermions descend further to representations of G′

CQ/Z3, where G
′
CQ =

SU(3)C ×U(1)′Q (compare with [104, p. 107]).

593 (-14) the notation N = 1 is often used instead of N = 1

593 (-11, -10) This means that S is a real subspace of minimal dimension of the spinor
representation ∆ so that the spinor representation of Spin+(V ) on ∆
restricts to S (see the right column of Table 6.6 on p. 363).

597 In Table 9.2 the formatting for the rows of W -bosons and Winos should
be as follows:

W -bosons W± 1 Winos W̃± 1
2

W 0 1 W̃ 0 1
2

598 (11) replace subgroup SU(2n) by subgroup SU(n)

599 (-15) the complex fundamental representation V = C2n of SO(2n) decomposes

607 (9-10) between open subsets of Rm and Rn.


